Share this page:

OpenVLThinker: Complex Vision-Language Reasoning via Iterative SFT-RL Cycles

Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang, in Proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS), 2025.

Download the full text


Abstract

We introduce \emphOpenVLThinker, one of the first open-source large vision–language models (LVLMs) to exhibit sophisticated chain-of-thought reasoning, achieving notable performance gains on challenging visual reasoning tasks. While text-based reasoning models (e.g., Deepseek R1) show promising results in text-only tasks, distilling their reasoning into LVLMs via supervised fine-tuning (SFT) often results in performance degradation due to imprecise visual grounding. Conversely, purely reinforcement learning (RL)-based methods face a large search space, hindering the emergence of reflective behaviors in smaller models (e.g., 7B LVLMs). Surprisingly, alternating between SFT and RL ultimately results in significant performance improvements after a few iterations. Our analysis reveals that the base model rarely exhibits reasoning behaviors initially, but SFT effectively surfaces these latent actions and narrows the RL search space, accelerating the development of reasoning capabilities. Each subsequent RL stage further refines the model’s reasoning skills, producing higher-quality SFT data for continued self-improvement. OpenVLThinker-7B consistently advances performance across six benchmarks demanding mathematical and general reasoning, notably improving MathVista by 3.2%, EMMA by 1.4%, and HallusionBench by 2.7%. Beyond demonstrating the synergy between SFT and RL for complex reasoning tasks, our findings provide early evidence towards achieving R1-style reasoning in multimodal contexts.


Bib Entry

@inproceedings{deng2025openvlthinker,
  title = {OpenVLThinker: Complex Vision-Language Reasoning via Iterative SFT-RL Cycles},
  author = {Deng, Yihe and Bansal, Hritik and Yin, Fan and Peng, Nanyun and Wang, Wei and Chang, Kai-Wei},
  year = {2025},
  booktitle = {Proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS)}
}

Related Publications