Learning Action Conditions from Instructional Manuals for Instruction Understanding
Te-Lin Wu, Caiqi Zhang, Qingyuan Hu, Alex Spangher, and Nanyun Peng, in Proceedings of the Conference of the 61st Annual Meeting of the Association for Computational Linguistics (ACL), 2023.
Download the full text
Abstract
The ability to infer pre- and postconditions of an action is vital for comprehending complex instructions, and is essential for applications such as autonomous instruction-guided agents and assistive AI that supports humans to perform physical tasks. In this work, we propose a task dubbed action condition inference, which extracts mentions of preconditions and postconditions of actions in instructional manuals. We propose a weakly supervised approach utilizing automatically constructed large-scale training instances from online instructions, and curate a densely human-annotated and validated dataset to study how well the current NLP models do on the proposed task. We design two types of models differ by whether contextualized and global information is leveraged, as well as various combinations of heuristics to construct the weak supervisions. Our experiments show a > 20% F1-score improvement with considering the entire instruction contexts and a > 6% F1-score benefit with the proposed heuristics. However, the best performing model is still well-behind human performance.
Bib Entry
@inproceedings{wu2023action, title = {Learning Action Conditions from Instructional Manuals for Instruction Understanding}, author = {Wu, Te-Lin and Zhang, Caiqi and Hu, Qingyuan and Spangher, Alex and Peng, Nanyun}, booktitle = {Proceedings of the Conference of the 61st Annual Meeting of the Association for Computational Linguistics (ACL)}, year = {2023} }